233 research outputs found

    Luminescence digital imaging microscopy.

    No full text

    Polycomb group protein complexes exchange rapidly in living Drosophila

    Get PDF
    Fluorescence recovery after photobleaching (FRAP) microscopy was used to determine the kinetic properties of Polycomb group (PcG) proteins in whole living Drosophila organisms (embryos) and tissues (wing imaginal discs and salivary glands). PcG genes are essential genes in higher eukaryotes responsible for the maintenance of the spatially distinct repression of developmentally important regulators such as the homeotic genes. Their absence, as well as overexpression, causes transformations in the axial organization of the body. Although protein complexes have been isolated in vitro, little is known about their stability or exact mechanism of repression in vivo. We determined the translational diffusion constants of PcG proteins, dissociation constants and residence times for complexes in vivo at different developmental stages. In polytene nuclei, the rate constants suggest heterogeneity of the complexes. Computer simulations with new models for spatially distributed protein complexes were performed in systems showing both diffusion and binding equilibria, and the results compared with our experimental data. We were able to determine forward and reverse rate constants for complex formation. Complexes exchanged within a period of 1-10 minutes, more than an order of magnitude faster than the cell cycle time, ruling out models of repression in which access of transcription activators to the chromatin is limited and demonstrating that long-term repression primarily reflects mass-action chemical equilibria

    Targeted cellular delivery of Quantum Dots loaded on and in biotinylated liposomes.

    Get PDF

    Homologous association of the Bithorax-Complex during embryogenesis: consequences for transvection in Drosophila melanogaster

    No full text
    Transvection is the phenomenon by which the expression of a gene can be controlled by its homologous counterpart in trans, presumably due to pairing of alleles in diploid interphase cells. Transvection or trans-sensing phenomena have been reported for several loci in Drosophila, the most thoroughly studied of which is the Bithorax-Complex (BX-C). It is not known how early trans-sensing occurs nor the extent or duration of the underlying physical interactions. We have investigated the physical proximity of homologous genes of the BX-C during Drosophila melanogaster embryogenesis by applying fluorescent in situ hybridization techniques together with high resolution confocal light microscopy and digital image processing. The association of homologous alleles of the BX-C starts in nuclear division cycle 13, reaches a plateau of 70% in post-gastrulating embryos, and is not perturbed by the transcriptional state of the genes throughout embryogenesis. Pairing frequencies never reach 100% indicative that the homologous associations are in equilibrium with a dissociated state. We determined the effects of translocations and a zeste protein null mutation, both of which strongly diminish transvection phenotypes, on the extent of diploid homologue pairing. Surprisingly, the pairing of homologous alleles was reduced, albeit only to 20 - 30%, by translocating one allele of the BX-C from the right arm of chromosome 3 to the left arm of chromosome 3 or to the X chromosome although trans-regulation of the Ultrabithorax gene was abolished. A zeste protein null mutation neither delayed the onset of pairing nor led to unpairing of the homologous alleles. These data are discussed in light of different models for trans-regulation. We examined the onset of pairing of the chromosome 4 as well as of loci near the centromere of chromosome 3 and near the telomere of 3R in order to test models for the mechanism of homologue pairing

    The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrn1 in distinct cytoplasmic foci

    No full text
    Sm and Sm-like (LSm) proteins form heptameric complexes that are involved in various steps of RNA metabolism. In yeast, the Lsm1-7 complex functions in mRNA degradation and is associated with several enzymes of this pathway, while the complex LSm2-8, the composition of which largely overlaps with that of LSm1-7, has a role in pre-mRNA splicing. A human gene encoding an LSm1 homolog has been identified, but its role in mRNA degradation has yet to be elucidated. We performed subcellular localization studies and found hLSm1 predominantly in the cytoplasm. However, it is not distributed evenly; rather, it is highly enriched in small, discrete foci. The endogenous hLSm4 is similarly localized, as are the overexpressed proteins hLSm1-7, but not hLSm8. The foci also contain two key factors in mRNA degradation, namely the decapping enzyme hDcp1/2 and the exonuclease hXrn1. Moreover, coexpression of wild-type and mutant LSm proteins, as well as fluorescence resonance energy transfer (FRET) studies, indicate that the mammalian proteins hLSm1-7 form a complex similar to the one found in yeast, and that complex formation is required for enrichment of the proteins in the cytoplasmic foci. Therefore, the foci contain a partially or fully assembled machinery for the degradation of mRNA

    The distribution of Polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing

    No full text
    The subcellular three-dimensional distribution of three polycomb-group (PcG) proteins-polycomb, polyhomeotic and posterior sex combs-in fixed whole-mount Drosophila embryos was analyzed by multicolor confocal fluorescence microscopy. All three proteins are localized in complex patterns of 100 or more loci throughout most of the interphase nuclear volume. The rather narrow distribution of the protein intensities in the vast majority of loci argues against a PcG-mediated sequestration of repressed target genes by aggregation into subnuclear domains. In contrast to the case for PEV repression (Csink, A.K., and S. Henikoff. 1996. Nature. 381:529-531), there is a lack of correlation between the occurrence of PcG proteins and high concentrations of DNA, demonstrating that the silenced genes are not targeted to heterochromatic regions within the nucleus. There is a clear distinction between sites of transcription in the nucleus and sites of PcG binding, supporting the assumption that most PcG binding loci are sites of repressive complexes. Although the PcG proteins maintain tissue-specific repression for up to 14 cell generations, the proteins studied here visibly dissociate from the chromatin during mitosis, and disperse into the cytoplasm in a differential manner. Quantitation of the fluorescence intensities in the whole mount embryos demonstrate that the dissociated proteins are present in the cytoplasm. We determined that <2% of PH remains attached to late metaphase and anaphase chromosomes. Each of the three proteins that were studied has a different rate and extent of dissociation at prophase and reassociation at telophase. These observations have important implications for models of the mechanism and maintenance of PcG-mediated gene repression
    • …
    corecore